A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Answer:
1.DP, using Recursion (Time limit expired)
int uniquePaths(int m,int n){
if(m==1 || n==1) return 1;
else return uniquePaths(m-1)+ uniquePaths(n-1);
}
2.DP, look up the recursion table directly.
class Solution {public:
int uniquePaths(int m, int n) {
vector<vector<int> >table(m,vector<int>(n,1));
for(int i=1;i<m;++i){
for(int j=1;j<n;++j){
table[i][j]=table[i-1][j]+table[i][j-1];
}
}
return table[m-1][n-1];
}
};
3.DP, Similar to 2, be more space efficient.
int uniquePath(int m,int n){
vector<int> table(n,1);
for(int i=1;i<m;++i){
for( int j=1;j<n;++j){
table[j]+= table[j-1];
}
}
return table[n-1];
}
for(int i=1;i<m;++i){
for( int j=1;j<n;++j){
table[j]+= table[j-1];
}
}
return table[n-1];
}
No comments:
Post a Comment