Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set
A solution set is:
Answer:2,3,6,7
and target 7
, A solution set is:
[7]
[2, 2, 3]
DFS method, using backtrack!
Note: each element can be used for more than one time!
class Solution {
public:
vector<vector<int> > combinationSum(vector<int> &candidates, int target) {
sort(candidates.begin(),candidates.end());
vector<int> subres;
vector<vector<int>> res;
conbinationSumDFS(subres,res,candidates,0,target);
return res;
}
void conbinationSumDFS(vector<int> &subres, vector<vector<int>> &res, vector<int> &candidates, int start, int sum){
if(sum==0){
res.push_back(subres);
return;
}
for(int i= start; i< candidates.size();++i){
if(candidates[i] <= sum){
subres.push_back(candidates[i]);
conbinationSumDFS(subres,res,candidates,i,sum-candidates[i]); //Note the start index is i !!!
subres.pop_back();
}
else
break;
}
return;
}
};
No comments:
Post a Comment