https://leetcode.com/problems/burst-balloons/
//trick: add head and tail element with 1 for edge usage, final result return dp[1][m]!
Given
n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by array nums. You are asked to burst all the balloons. If the you burst balloon i you will get nums[left] * nums[i] * nums[right] coins. Here left and right are adjacent indices of i. After the burst, the left and right then becomes adjacent.
Find the maximum coins you can collect by bursting the balloons wisely.
Note:
(1) You may imagine
(2) 0 ≤
(1) You may imagine
nums[-1] = nums[n] = 1. They are not real therefore you can not burst them.(2) 0 ≤
n ≤ 500, 0 ≤ nums[i] ≤ 100
Example:
Given
[3, 1, 5, 8]
Return
167nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> [] coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167
Answer:
Method: DP + divide & conquer!
Suppose num[k] is the last balloon bursted in interval [i,j], so last step we will get coin:
num[i-1]*num[k]*num[j+1]
//dp formular:
dp(i,j) = Max{dp(i,k-1) + num[i-1]*num[k]*num[j+1] + dp(k+1,j)} , k=[i,j], when i<=j
dp(i,j) = 0, when i>j
dp(i,j) = 0, when i>j
public class Solution {
public int maxCoins(int[] nums) {
int m=nums.length;
if(m==0)return 0;
int[] nums2 = new int[m+2];
int[][] dp = new int[m+2][m+2];
//trick: add head and tail element with 1 for edge usage, final result return dp[1][m]!
nums2[0]=1;
nums2[m+1]=1;
for(int i=1;i<=m;++i){
nums2[i]=nums[i-1];
}
for(int j=1;j<=m;++j){
for(int i=j;i>=1;--i){
//dp common case func
for(int k=i;k<=j;++k){
dp[i][j]=Math.max(dp[i][j], dp[i][k-1]+dp[k+1][j] + nums2[i-1]*nums2[k]*nums2[j+1]);
}
}
}
return dp[1][m];
}
}
No comments:
Post a Comment